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 INTERNATIONAL ECONOMIC REVIE W

 Vol 22, No. 2, June, 1981

 ON -NAS n EQUILIBRIUM PROGRAMS OF CAPmTAL ACCUULATION
 UNDER ALTRUISTIC PREFERENCES*

 BY JOHN LANE AND TAPAN MITRA1

 1. INTRODUCTION

 An important problem in intertemporal economics is to examine whether

 intergenerational equity is compatible with Pareto-efficient allocation of resources.
 There is no unanimity about what constitutes an appropriate concept of inter-

 generational equity. Rawls [1972] has undertaken a rather exhaustive study of
 the concept of distributive justice, but has some reservations against the appli-
 cability of the concept proposed by him in an atemporal context, to intertemporal
 economics. Dasgupta [1974a, b] has suggested that the concept of Nash non-
 cooperative equilibrium, in an intertemporal context, corresponds to the univer-
 salizability criterion of distributive justice discussed by Rawls. We will consider
 this equilibrium solution to be our concept of intergenerational equity.

 We consider a simple aggregative model of capital accumulation, with a pre-
 ference structure that reflects altruism in the specific sense that each generation's
 welfare is defined not only on its own consumption level, but also on that of its
 immediate descendants. For such an intertemporal society, a program will be
 considered to be given by an infinite sequence of savings ratios. A Nash non-
 cooperative equilibrium is a sequence of savings ratios for which the optimal choice

 of a savings ratio by each generation, on the assumption that all other generations
 save in accordance with this program, is also as prescribed by this program.

 With reference to interior stationary Nash equilibria, it has been maintained by

 Dasgupta [1974a, b] that they are Pareto inefficient. Earlier, an identical result
 had been obtained by Phelps and Pollak [1948] in the context of a more complex
 preference structure. In both models, it was assumed that the utility function has
 constant elasticity and that the technology is linear.

 To make a statement about the possible Pareto inefficiency of a particular

 program, one must compare it with all other feasible programs that emanate from
 the same initial conditions. The above authors take this to be the initial endow-
 ment of the economy. This is certainly the correct use of the Pareto efficiency

 concept if we are considering the possible Pareto efficiency of a program from the
 beginning of biological time. In Section 4 of this paper, we extend the existing
 results to include all interior Nash equilibria, under much weaker assumptions.

 However, we argue in this paper, that if there is altruism reflected in the pref-

 * Manuscript received October 3, 1979; revised October 20, 1980.
 1 This paper has benefited from comments by Partha Dasgupta, Walter Heller, John Ledyard,

 Glen Loury and Roger Myerson, and from suggestions by three referees. Research of the second
 author was partially supported by a National Science Foundation Grant.
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 310 JOHN LANE AND TAPAN MITRA

 erence structure, and if there is always a preceding generation, then generation
 one inherits not only a particular endowment of capital, but also a "moral obli-
 gation" or a "contract" (not necessarily enforceable) to save at the rate that the
 preceding generation supposed it would do when making its own plans. If this
 is not the case then generation one can hardly pre-suppose that generation two

 will honor their "moral obligation" to generation one. And then, at least within
 the confines of a non-stochastic model, the concept of a Nash equilibrium would
 not be the appropriate solution concept.

 Our primary purpose in this paper is to show that, with this added restriction on
 the set of Pareto comparable feasible programs, a certain class of Nash equilibrium
 programs is Pareto efficient; that is, for this class, there is no conflict between
 intergenerational equity and Pareto efficiency. Without this added restriction,
 it is not surprising that all Nash equilibria are Pareto inefficient; for, "all" gen-
 erations can be made better off if the "initial" generation, whose interests are no
 longer considered, is allowed to pay a sufficient price. In both the analysis of
 Dasgupta, and of Phelps-Pollak, the comparison program has this property.

 The procedure followed in our paper may be briefly summarized here. First,
 we show that an interior program is a Nash equilibrium program if and only if

 it is " quasi-competitive," a term which corresponds to the notion of competitive
 behavior in the context of an externality which is not internalized. Second, a
 quasi-competitive program is shown to be Pareto efficient if an obvious trans-
 versality condition is satisfied. The last step is to consider the circumstances

 under which this transversality condition is satisfied. In following this route,
 we also note other interesting results, such as the relation between efficient and
 Pareto-efficient Nash equilibrium programs, and some asymptotic properties of
 Nash equilibria. In Sections 2-6. we include statements of all results, and
 verbal discussions pertaining to them. All proofs are postponed to Section 7.

 2. THE MODEL

 2.1. Production. We consider a one-good economy, with a technology given
 by a function, f, from Re to itself The production possibilities consist of inputs
 x, and outputs y =f(x), for x ?0. The following assumption on f is maintained
 throughout :

 (F) f(O)=0, and for x?,O f is strictly increasing, concave and twice differ-

 entiable.

 This assumption is sometimes strengthened to the following:

 (F') f(x) dxa for x ? 0, where d > 0, and 0 < a < 1.

 A linear technology is obtained when (F') holds, and a= 1.

 We consider the initial input level, x? to be historically given and positive. A
 feasible production prograin is a sequence <x, y> = <xe, yt+ I> satisfying
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 (I) 0x O ? Xt fo y for t ?1,f(xt) =yt+ for t .

 The consumption program Kc> Kct> generated by Kx, y> is

 (2) ct =yt-Xt ( ), for t t> .

 The sequence <x, y, c> is called a feasible program, it being understood that
 Kx, y> is a production program, and <c> the corresponding consumption program.
 A feasible program <x, y, c> is called interior if c>0 for t? 1.

 A feasible program Kx, y, c> is inefficient if there is a feasible program
 x', y', c'>, such that c'>c for t? 1, and c>>ct for some t. It is efficient if it is
 not inefficient.

 The consumption-ratio sequence <z>=<zK> associated with a feasible program
 <X, y, c> is given, for t ? 1, by

 (3) if yt > 0 t =0 if y1 = 0.

 The corresponding saving-ratio sequence is Ks> =st> = -zt>. A feasible
 program <x, y, c> is stationary if t=zt for t? 1.

 2.2. Preferences. Individuals are considered to be identical except for their
 dates of birth. The group of individuals born at the beginning of period t is called

 the t-th generation. Each generation lives for precisely one period, and is
 replaced by an equal number of direct descendants the instant they die.

 The preferences of each generation are the same, and are representable by a
 welfare function U from R+ x R* to R*, We consider generation t's welfare,
 denoted by Ut, to be dependent on its own consumption, and on the consumption
 of its immediate descendants. Thus, we can associate with a feasible program

 Kx, y, c>, a welfare sequence <u> = <tft>, given by

 (4) vt = U(ct ct+1) for t ? i1

 The following assumption on U is maintained throughout:

 (U) U(c, c')=v(c)+bv(c'), for (c, c')?0, where v is a function from RT to
 R*, and b>0.

 We will refer to v as a utility function. We assume that v satisfies

 (V) v( . ) is increasing, concave and twice differentiable for c > 0.

 This assumption is sometimes strengthened to the following:

 (iV') v(.) is twice differentiable, andt [v'c)c1v'(c)] = w(c) w, for c ?0, where
 O>w> -so.

 (VF) implies that v is representable in the form v(c)= -c{[if J>0, so w= -
 (1 ?)j< -1]: v(=c-)c[if 0>t> - I, so -I <w= -(1 +)<0]; v(c)=log c(So w
 = 1). The additive and multiplicative constants can be ignored, for the set of
 Nash equilibria (which is the solution concept discussed below) is invariant under
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 312 JOHN LANE AND TAPAN MITRA

 linear increasing transformations of the utility function, v(.).
 In choosing to look at the economy from t= 1 onwards, and taking x0 = x as

 historically given, we are not presupposing that t =0 represents the beginning of

 biological time. There is always a preceding generation, and generation one's

 choice of c1 affects the welfare of generation zero. It is not necessary to consider

 the history of the economy further back in time than t =0, for altruism is assumed

 to extend only to one's immediate descendants.

 Our formulation of preferences indicates that a generation's altruism (b >0)

 does not extend, even indirectly, over all future generations, as would be the case

 if ut = U(ct, ut 1), for example. Even if our concern is assumed to extend over
 any finite number of generations, we doubt that this is a very restrictive assumption.

 Also, altruism is effective only insofar as one's immediate descendants choose to

 consume the output bequeathed to them.

 2.3. Concept of Nash Equilibrium. We assume that each generation can

 choose its own consumption ratio. Equivalently, each generation can choose a

 consumption schedule ct(y) but it must be linear with zero intercept.
 We wish to consider a solution concept which will locate those feasible pro-

 grams which, in some minimal sense, imply a "just"' savings principle and so an

 equitable allocation among generations. To find such a savings principle, Rawls
 proposed the hypothetical construct of the "original position." All generations,

 past, present and future, belong to the original position at any time t; however,

 each generation is assumed ignorant as to when it will exist. A member of the

 original position is required to assume it is born at some arbitrary time, t, and

 to ask if s, is the best savings ratio from its point of view, on the assurance that all
 past and future generations live up to their obligations to save according to the

 sequence <s>. A prerequisite for <9> to be considered "just" is that this re-
 quirement of individual rationality be met for all generations; furthermore, as t

 is arbitrary, there would be an internal contradiction if such programs were not

 intertemporally consistent.

 These considerations are captured in the Nash equilibrium solution concept,

 i.e., for all t, f must maximize generation t's utility subject to all other consump-

 tion ratios being given by <K>. Formally, a feasible program <x, Y, c> is a
 Nash equilibrium program if its consumption ratio sequence <K> is such that for
 t?21, and 0<z<1,

 (5) U[2ty, Et+1f((1 - t)Yt)] ? U[ZYt5, zt+1f((I -Z)Yt

 (See Dasgupta [1974a, b] or Lane [1977] for a more complete discussion.)
 Given any solution concept, such as the Nash equilibrium concept, a natural

 question to ask is whether the set of Nash equilibria is non-empty. Since it is
 well-known that under fairly general conditions, Nash equilibrium programs
 exist (see, for example, Peleg and Yaari [1973]) we shall not devote any space to
 this question. Rather, we shall take for granted that Nash equilibrium programs
 exist, and study some qualitative and normative properties of such programs.
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 NASH EQUILIBRIUM PROGRAMS 313

 We will restrict our attention to Nash equilibria which are interior. This elimi-

 nates programs for which Xe or zt becomes zero for some date; these programs
 can hardly be considered 'just" in a world in which the existence of a next gene-
 ration is never an issue. Thus, our restriction does not limit seriously the scope
 of the exercise.

 3. PRELIMINARY PROPERTIES OF NASH EQUILIBRIUM PROGRAMS

 In this section, we study some elementary properties of Nash equilibrium
 programs, and establish existence and uniqueness results relating to stationary
 Nash equilibrium programs.

 First, we note that if Kx, y, c> is an interior Nash equilibrium

 (6) v'(ce) = bv'(c1+ 1)z1+ If'(xe) for t > 1.

 At the margin, generation t is indifferent between consuming an extra unit of
 output and bequeathing it to its immediate descendants who would then increase

 their consumption by zt+ 1f'(x).
 It is useful to introduce the differentiable mapping, y, such that

 (7) =t g(zj1, yt).

 iff (6) holds. This defines the set N. of consumption ratio sequences Kz> which
 correspond to interior Nash equilibria, that can be generated from x0 = x. Let
 N be the subset of N. for which every member is independent of xo= x.

 In view of the fact that the generations are all alike, a Nash equilibrium program
 of particular interest is a stationary one. Let N be the subset of N, for which

 every member satisfies zt = zt+ 1 for t ? 1. By (7), they satisfy z = g(z, Y) for
 t> 1 for some choice of z>O.

 The following properties of g are useful and readily verified.

 LEMMA 1. Under (F), (U), (V), g satisfies the following conditions

 ( SM #5_g= -gsign [w(cr+i) + 1]
 (8) sign Si

 (9) sign = sign, xi(,) - v (etf+x,) ,-jx

 It is, of course, clear from (9) that under (F), (U), (F'), sign @g/8yt=sign (1 -a).
 (1+ w). Using these properties of g, we have the following uniqueness result
 regarding stationary Nash equilibrium programs:

 PROPOSITION 1. Under (F), (U), (V), the set N has at miost one member
 if either (i) inf f'(x) < I <supf'(x), or (ii) w(c) = w, and [f>x)x/f(x)1 =1.

 xO> X.?

 It remains to prove an existence result regarding stationary Nash equilibrium
 programs; that is, to find conditions under which N is non-empty. Consider the
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 314 JOHN LANE AND TAPAN MITRA

 graph of g in the (zt 1, zi) space, given yt, The graph will in general shift with a
 change in yt, Suppose a member Kz> belongs to N, and <y> is the associated
 output sequence. Then, g(z, yt) =g(z, Yt + ). Note that this is certainly sat-
 isfied if g is independent of yt, so the mapping does not shift. So, in particular,
 the initial input of the economy does not affect the sequence Kz>, and N=N2.
 It is also satisfied if yt is a constant and equal to f(x0) in which case the mapping
 may shift, but it will pivot around the point (z, z). Suppose (F), (U), (V') are
 satisfied. Then in the former case, (9) implies am 1, or w - 1. In the latter
 case, constancy of z and y implies constancy of c and x as well. So (6) implies
 that x1-%=(dab)z. But also, dxa==cxc=zdxa+x3 The simultaneous solution
 yields x-a~xla=z[dab!(l?ab)], and the initial input of the economy is all
 important. This suggests

 PROPOSITION 2. Under (F), (U), (V), an interior stationary Nash equi-
 librium program exists i at least one of the following three conditions is sat-

 isfied: (i) wow 11(ii) a=1t,(I'ii) x1-a~dabl( + a).

 The following example shows that, under quite reasonable conditions, a
 stationary Nash equilibrium program may fail to exist. Letf(x)=2x'12, v(c)-
 c1/2, x=1, b=1/2. Then, clearly w:-1, and a-1. Also, xl/ld= 1/2>1/4
 {1 + (1/4)} = abl(1 + ab). Hence, by Proposition 2, no interior stationary Nash
 equilibrium exists. It is also clear from Proposition 2 that unless the techno-

 logy is linear, the existence of a stationary Nash equilibrium is an exception, rather
 than the rule. So, in the next two sections, we extend the scope of our dis-
 cussion and results beyond the confines imposed by stationarity.

 Dasgupta [1974a, b] restricts his attention to the strengthening of assumptions
 (F), (V), given by a 1, and w< - 1. Then (9) indicates that the mapping g

 Zt

 / I

 A ;Z I: Zt+
 FIGURE 1: a=1, w<-1; N,=N,1-{<z*>l,
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 does not shift with changes in Yt; so NA = N, and the set N can easily be illustrated,
 as in Figure 1. By (8), as w < - 1, so ag/azt +I >0, and there are two stationary
 equilibria, at A and B, but only the latter is interior. Hence, N consists of the
 single member Kz*>X

 It is a consequence of the assumption w< -1, that <z*> is "'unstable." If

 z ,>z*, then z, is strictly increasing, and the economy will exhaust the stock of
 the commodity in finite time, leaving nothing for subsequent generations to

 consume. This situation is hardly 'just." If zl <z* then z, is strictly decreasing,
 and it converges to zero fast enough to make the sequence <K,> summable, and this,
 in turn, implies inefficiency of the corresponding Nash equilibrium program.
 For these reasons, D~asgupta only considers the normative significance of interior
 stationary Nash equilibria.

 However, if w > - I, then AC slopes downwards. So <z*> is stable, and the
 consumption ratio sequences <:> that approach <z*> should be considered. If
 W = - 1, then AC is horizontal, and (6) has only one solution, namely z, = I /(1 + b),
 that is N=x. Even if a<1, the same result is observed, with z,=11(1,+ab).
 In general, of course, AC will shift and then not only is it unlikely that a stationary
 Nash equilibrium exists, but also cyclical behavior in the consumption ratio
 sequence Kz> may be observed.

 4. ON THE CONCEPT OF PARETO EFFICIENCY

 In this section, we discuss the concept of Pareto efficiency that is used in the
 literature, and propose an alternative definition that is more appropriate for
 the solution concept we are studying.

 Under the assumptions a 1, and w < - 1, Dasgupta maintains that the unique
 stationary Nash equilibrium is Pareto inefficient. It is worthwhile to clarify
 the meaning of this result. However, first his result is extended to include all
 interior Nash equilibrium programs, under a much weaker set of assumptions.

 PROPOSITION 3. Under (Fl, (U), (V), if <Y, Y, C> is any interior Nash
 equilibrium program, then there is a feasible proayrain Kx, y, c> such that

 c1 < el, and utt > tifor all t? 1L

 Under Dasgupta's assumptions, this same result has been observed by Phelps
 and Pollak [1968], although they base their analysis on a considerably more
 complex preference structure, where the welfare of all descendants enters the
 welfare function of generation t. The customary interpretation of a result like

 Proposition 3 is that the program <XJ, Y, a> is Pareto inferior to the program
 <x, y, c>* This is certainly the correct interpretation if t=o is regarded as the
 beginning of biological time.

 The static version of the Prisoner's Dilemma is often cited as a reason for
 expecting this type of result. Perhaps, though, this intertemporal model is more
 akin to the infinitely repeated game formulation of the Prisoner's Dilemma.
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 316 JOHN LANE AND TAPAN MITRA

 Then, there need be no conflict between a Nash equilibrium and Pareto efficiency.
 If we consider that for every generation, there is a preceding generation, and

 we are looking at the economy from t=O onwards, then our choice of c1 would
 affect the generation born in t =0A From Proposition 3, as c1 < ?1, so clearly
 u0< tQ, and so generation zero has been made worse off. We cannot then
 conclude Pareto inefficiency if we include the interests of generation zero in our

 ordering of programs. Generation zero anticipates that generation one will

 consume more than they in fact consume, with the result that generation zero
 chooses a consumption level which, ex post, is revealed non-optimal. Of course,
 it is obvious that the program Qx, ye, t> can be dominated from t= I onwards,
 if the preceding generation is always allowed to pay an appropriate price, objec-
 tions incurred based on our assumed "non-overlapping" of generations notwith-

 standing.

 If generation one can behave in this manner towards generation zero then,
 by the same token, it must anticipate that generation two may do the same to them.
 Then, the Nash equilibrium concept does not imply rationality at the level of the
 individual.

 There are at least two ways out of this dilemma. One is to consider a stochastic
 model in which each generation makes a decision on the basis of a probability

 distribution, defined on the next generation's consumption level, and centered
 around its expected level. The other method, and the one discussed in this paper,
 is to suppose that generation one inherits an enforceable contract, or a moral
 obligation to generation zero to consume the anticipated amount. It will not be
 disputed that two feasible programs are Pareto comparable only if the initial
 " state" of the economic system is the same for both programs. The state is a

 summary of the past behavior of the system, insofar as it is relevant for decisions
 to be made today. So what seems to have been overlooked is that the state is

 summarized not only by the inherited level of output, but also by the inherited

 moral obligation to consume the anticipated amount. To the extent that the

 economic system is inherited, and not subject to choice, the set of Pareto com-
 parable programs is smaller, and the possiblity of conflict between the concepts
 of Pareto efficiency and that of a Nash equilibrium is reduced.

 Even if t = 0 is regarded as the beginning of biological time, these considerations
 are still relevant if one is interested in Pareto efficiency from t =2 onwards: for,
 then, there is a preceding generation and an inherited moral obligation.

 This result is also implied by the earlier Rawlsian interpretation, at least if the

 original position at any moment of time included all past generations. For then
 generation zero belongs to the original position at t=0, and t= 1, so the inherited
 contract would have to be honored: otherwise its consent to a program extending
 from t = I would not be consistent with its choice of a program extending from
 t= 0.

 The above observations indicate that we should treat c1 as historically given,
 just as we consider the initial input x to be historically given. So we shall consider

 a feasible program <x, y, c> as Pareto comparable with a feasible program
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 <x', y', c'> if c 1=c 1 .

 DEFINITION 1. A feasible program <x, y, c> is Pareto inefficient if there is
 a feasible program <x', y', c'> such that (i) c'1 =c1; (ii) ut?ut for t> 1, and u' >ut
 for some t. A feasible program is called Pareto efficient if it is not Pareto ineffi-

 cient.

 Our solution concept is that of a non-cooperative Nash equilibrium in which

 every generation is endowed with the right to choose its own savings ratio. The

 appeal of a non-cooperative solution concept in welfare economics is really that

 it captures some aspects of a "rights" based political philosophy when binding

 agreements cannot necessarily be assumed. There are some things that in-

 dividuals should be allowed to choose in light of their own self-interest even if

 the overall outcome reduces social welfare. Our analysis is an enquiry as to

 what is an appropriate endowment of rights, or zone of control, for each in-

 dividual, so that there is no conflict between a "rights" based political philosophy

 and efficiency. It is a result of this enquiry that there will be no such conflict

 if the zone of control is constrained as indicated in part (i) of Definition 1.

 This definition also enables us to identify uniquely the source of the Phelps-

 Pollak and Dasgupta "inefficiency" as summarized in Proposition 3. For if an

 interior Nash equilibrium is Pareto-efficient, then the only program which yields

 an improvement in welfare for the set of generations born after t =0 is one which

 reduces the welfare of generation zero. Furthermore, this program could not be

 considered "just," for it would not receive the consent of generation zero which

 is a member of the original position at t= 1. Therefore, the restriction in Defi-

 nition 1, that c>=c1 (or equivalently c'1>cl) is both natural and minimal if we
 wish to give a Rawlsian interpretation to our results.

 It should be noted that whether or not generation zero plays an active role in

 the decision making process at t = I is not pertinent insofar as we wish to consider

 whether the program from t= 1 is "just" in the Rawlsian sense. In fact, our

 analysis is based on the supposition that generation zero is not alive when the

 decision on c1 is made. It is true that the model can be reformulated as one of

 "overlapping" generations with each generation living for two periods and each
 with a preference structure defined only over its own consumption levels in the

 two periods. There are no considerations of altruism. If we assume that at

 each moment of time the "young" choose the savings ratio, and that output (net
 of savings) is distributed equally (or in some pre-determined proportion) between
 themselves and their parents, then the results below will not be modeified in any

 essential way. In this alternative formulation, even though generation zero is
 alive when the decision on c1 is made, it still plays no role in the decision making
 process at that time.

 However, the essential point is that considerations of justice require us to deter-
 mine a program that would receive the consent of all parties, just as if they were

 actively involved in the decision making process. The "original position" is
 simply a hypothetical concept that enables one to capture this notion.
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 318 JOHN LANE AND TAPAN MITRA

 5. NORMATIVE PROPERTIES OF NASH EQUILIBRIUM PROGRAMS

 In this section we will isolate the class of Nash equilibrium programs which are

 Pareto efficient in the sense of Definition 1.

 To this end, we first show that Nash equilibrium programs behave quasi-

 competitively. The meaning of this term is given in:

 DEFINITION 2. An interior program <x, Y, c> is quasi-competitive if there
 is an associated price sequence <q, P> = <Kit, it>, such that q> 0, and Ptj> 0, for
 t>O, and

 (10) qtit - t t (its l/t+-)et+1

 > qtU(c, c') - Ac - (Pt+1/lt+1)c' for c, c' > 0 t > 1.

 (11) -t+I-pdxt ] 2: Pt+? f(x) - AX, for x > O t ? 0.

 Let <x, y, c> be any feasible program. Generation t must allocate output yt
 between ct and xt; these are variables under direct control. To do this optimally,
 it must anticipate a given level of zt+ , since ut = v(ct) + bv(ct+ 1) = v(ct) + bv(zt ?,
 f(x,)). That is, the assumed level of zt+ constitutes an externality, which has not
 been internalized in the preference structure.

 If this optimal choice corresponds to that implied by the program <x5, Y>,
 it follows that we must take prices as <q, p> and consider the externality to be
 fixed at Et+ , so that the two programs are comparable. Therefore, the imputed
 value of generation t's inherited output is Ptctc+i5t+ lyt+l = Pct+ (P+ lh+ 1)ct+1,
 where Pti+ is the futures price of a unit of output at (t + 1), and therefore (P /t+
 Et+ ) is the futures price of a unit of consumption at (t+ I). It then follows that
 condition (to) is to be interpreted as "utility maximization subject to a budget
 constraint" in the presence of an externality which has not been internalized.

 Condition (11) constitutes "intertemporal profit maximization" and there is no
 externality present here. For these reasons, we call the above conditions quasi-
 competitive.

 Conditions (10) and (11) are similar to those obtained in the literature on
 optimal and efficient growth theory (see Gale and Sutherland [1968], Majumdar-
 Mitra-McFadden [1976]), except that the marginal rate of transformation between

 ct+ 1 and yt+ 1 is unity in these models. That is, the futures price of a unit of con-
 sumption, and a unit of output, are the same. In the model discussed here, in
 contrast, the marginal rate of transformation between ct +1 and Yt +1 is Zt+1.

 The marginal rate of substitution between Yt+1 and ct, given zt+1, is [v'(ct)/
 bv'(ct+1)zt+1]. The marginal rate of transformation is f'(xt). In a quasi-
 competitive equilibrium the two are equal, and yield the interior Nash equilibrium
 condition (6). The common slope of the indifference curve and the production
 possibility curve provide the price ratio implicit in (10) and (11). This suggests:

 PROPOSITION 4. Under (F), (U), (V), an interior program <x5, Y, c> is a
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 Nash equilibrium program, iff it is quasi-competitive.

 In view of the differentiability assumptions on f and v, the prices <q, p> asso-
 ciated with a quasi-competitive equilibrium <x, y, c> are determined uniquely
 (up to a positive scalar multiple), and given by: po = , t I= p/f-'(x) for t 0
 q= = , qt p,/v'(t) for t> 1. Hence, when we refer to prices associated with any
 Nash equilibrium, we will be referring precisely to the above-defined prices.

 We would now like to find an easily applicable criterion that can test the Pareto
 efficiency of Nash equilibrium programs. The following proposition provides
 us with such a criterion.

 PROPOSITION 5. Under (F), (U), (F), if an interior Nash equilibrium program

 Kx, y, c> satisfies

 (12) infptxt = 0

 then it is Pareto-efficient.

 We refer to (12) as the transversality condition. This condition is a rather
 strong sufficient condition for Pareto efficiency. Thus, a Pareto-efficient Nash
 equilibrium need not satisfy (12), even if it is stationary (see example below). It
 is therefore worthwhile to look for weaker conditions which ensure Pareto
 efficiency of a Nash equilibrium program. If we restrict our attention to
 stationary Nash equilibria, and replace (F) by (F), then the necessary and suffi-
 cient conditions of Pareto-inefficiency are given by:

 PROPOSITION 6. Under (F'), (U), (F), a stationary interior Nash equilibrium
 program is Pareto-inefficient if and only if

 (13) infpx,>0, and S <
 t'>0to t-0 PtXt

 The following example indicates that a Nash equilibrium could be Pareto

 efficient, but violate (12). Let f(x)=2xl/2, b =2. The program <x, y, c> given
 by x,= c=1, for t?1, yt=2 for t 1, is feasible from x0=x=l. It satisfies
 (6), and is a Nash equilibrium program. Since ptXt= 1 for t?0, so it is Pareto
 efficient by Proposition 6. However, it clearly violates (12).

 Under (F), (13) is the necessary and sufficient condition for a stationary pro-
 gram to be inefficient (see Corollary 5 in Mitra [1979]). Hence, we have the
 following interesting result:

 COROLLARY 1. Under (F'), (U), (F), a stationary interior Nash equilibrium
 program <x, y, c> is Pareto-efficient if it is efficient.

 It should be mentioned that much weaker conditions than (F') can be used to
 obtain Corollary 1, following the methods used in Mitra [1979, Theorem 1].
 We do not attempt such generalizations here, as the proof of Proposition 6
 indicates how such extensions can be achieved, and because such results are silent
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 on the Paretoteffiency of nonstationary Nlash equilibdia.
 It would be interesting to obtain results which parallel Proposition 6 and

 Corollary 1, for all interior Nash equilibrium programs. One way is to restrict
 the model further to ensure that (12) becomes both necessary and sufficient for

 Pareto efficiency of Nash equilibria. This means, in turn, ruling out cases dem-
 onstrated by our above example. This is easily accomplished if we restrict b

 to be ?1; that is, we assume that generations care for themselves at least as much
 as they care for their children. With this additional restriction, we have

 PROPOSITION 7. Under (F'), (U), (V), and b? 1, an interior Nash equili-
 brium program <x, y, c> is Pareto efficient if (12) holds.

 Using Proposition 7, the following result is then evident:

 COROLLARY 2. Under (F'), (U), (V), and b? 1, an interior Nash equilibrium
 program (x, y, c> is Pareto efficient if it is efficient.

 Corollary 2 says that if the prices are "right" as far as intertemporal allocation
 of resources is concerned (the quasi-competitive program is efficient), then they
 cannot be "errant" in regard to achieving a Pareto efficient distribution of goods
 among generations (the quasi-competivive program is Pareto efficient).

 Just as Proposition 4 provides a price characterization of a Nash equilibrium
 program, so the following result presents a price characterization of Pareto
 efficient Nash equilibrium programs.

 PROPoSITION 8. Under (F'), (U), (V), and b? 1, an interior program
 (x, y, c> is a Pareto cient Nash equilibrium program if (i) it is quasi-
 competitive, and (ii) it satisfies (12).

 Since the consumption-ratio figures as a basic variable in all of our analysis,
 it is worthwhile to obtain a restatement of Proposition 7, in which the transversality
 condition (12) is replaced by a condition on zoo For this purpose, we find it useful
 to separate the case of a non-linear technology (a <1) from the case of a linear

 technology (a= 1), as the behavior of z; in the two cases is not quite the same.
 We then have the following two results:

 PROPOSITION 9. Under (F'), (U), (V) b 1, and a=1, an interior Nash
 equilibrium program is Pareto efficient iff

 (14) limT z,=
 T-+oD e=1

 PROPOSITION 10. Under (F'), (U), (V)> b? 1, and a< 1, an interior Nash
 equilibrium program is Pareto efficient iff

 (15) lim sup Zt > 0.

 Two remarks are in order regarding the above results. First, it is clear that if
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 an interior quasi-competitive program satisfies (15), then it is Pareto-efficient,
 regardless of whether the technology is linear or non-linear. Since (15) says that
 the consumption-ratio be bounded away from zero for some subsequence of

 periods, we have demonstrated that interior Nash equilibria are Pareto-efficient
 under very weak restrictions. This should be contrasted with Proposition 3
 where we showed that every interior Nash equilibrium was "Pareto inefficient"
 in the sense used by Dasgupta.

 Second, it is easy to establish that if a =1, and d> I (the linear technology is
 productive), then an interior Nash equilibrium program is Pareto efficient if
 (15) holds. For unproductive linear technologies, such a claim cannot be made.

 We finally come to the existence result regarding Pareto-efficient Nash equi-

 libria. This is accomplished by using Proposition 2, and the normative properties
 of Nash equilibria proved in this section. More precisely, the stationary Nash
 equilibria, which are shown to exist (by Proposition 2) can be verified to be Pareto
 efficient, if we have b(l -a) : 1. This gives us the following theorem.

 THEOREM Lk Under (F'), (U), (V'), b(t -a)? 1, there exists an interior
 stationary Pareto-efficient Nash equilibrium if one of the following three
 conditions is satisfied: (i) w=- 1, (ii) a= 1, (iii) xtew4= dabl(l + ab).

 A more satisfactory existence result would be one which was not restricted to

 stationary programs. Under (F'), (U), (V'), if the technology is non-linear
 (a < 1), w # -1, and X1a4 # dab/(1 + ab), there could exist non-stationary Pareto-
 efficient Nash equilibria, although by Theorem 1, there could not exist stationary
 ones. We finally note:

 THEOREM 2. Under (F'), (U), (V'), there exists a Pareto-efficient Nash
 equilibrium if one of the following four conditions is satisfied: (i) w= -1, and
 b(- a)?1, (ii) au=1, (iii) xl-4=dab/( +ab), and b(1 -a)?1, (iv) w>-1, and

 6. SOME CONCLUDING COMMENTS

 In this section we would like to relate the results of our paper to those of two
 earlier papers in the literature in this area, namely the contributions of Phelps-
 Pollak [1968], and Kohlberg [1976]. The welfare of generation t in the Phelps-
 Pollak formulation is:

 ut = v(ct) + 3 I av(ct +T) = v(c) + Aut + I + cQ - 1)v(ct )+ )
 To l

 If = 1, then

 ut = V(cN) + Bets + - a tv(c)

 Thus, any program that increases ct will increase ut-1. Therefore the conflict
 of interests discussed earlier does not arise and, in accordance with intuition and
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 well known results in control theory, any interior Nash equilibrium program will
 be Pareto efficient; the restriction c' =c1 given in Definition 1 plays no role.

 It is natural to define perfect altruism to correspond to the absence of any
 conflict of interest, that is 3= 1. It is as if there is complete cooperation among

 generations because we have attributed to them the appropriate ethical values
 which induce them to behave in this manner. However, Rawls argues ([1972],
 p. 584) that we should avoid attributing any ethical motivations to generations;
 we do not ask what a generation's preference function "should be," but rather we
 let them make decisions on the basis of their "selfish" interests insofar as they can
 ascertain them.

 Now while a generation's selfish interests may extend to its children and perhaps

 to their children also, it is an empirical question whether they extend into the affairs
 of distant future generations. These considerations are in accordance with

 assuming only a limited form of altruism, as is the case if either 3 4 1 (following

 Phelps-Pollak) or u,=v(c,)+-bv(c,? ) (following Dasgupta). Both formulations
 embody the same inherent conflict of interests; Pareto efficiency in the usual sense
 is lost.

 Our results identify uniquely the source of this inefficiency. Pareto efficiency
 can be restored if the condition of Definition 1, that is, the "inherited moral

 obligation," is satisfied. This indicates, in a precise way, the need for a form of
 limited collective behavior, or social contract, that will in effect make this "moral

 obligation" a binding agreement.
 In an overlapping generations framework perhaps the social contract could

 take the form of a system of automatic adjustments in the levels of social security

 taxes (paid by the young), and pensions (received by the old), by which all gener-
 ations must abide. The rate of tax paid by generation t+ 1 could be a predeter-
 mined function, known by generation t at time t, of the pension paid by generation

 t to generation t -.1. One presumes that there exists a function which would

 modify behavior based on individual rationality so that there is no conflict with
 the principles of intergenerational justice; that is, that condition (i) of Definition 1

 is always satisfied. However, this is offered only as a suggestion and is an ap-

 propriate area for further research.

 Kohlberg [1976], using a model which is a special case of the one studied in this

 paper, and others (for example, Loury [1976]) in the context of somewhat differ-
 ent models, have enlarged the strategy space to allow each generation to choose

 a consumption schedule, ct(y), which may be non-linear. However, all gener-
 ations are required to choose the same consumption schedule. Although this
 restriction might appear "natural" since all generations have the same preferences,

 and face the same technology, there is no demonstration of the fact that along a

 Nash equilibrium, the consumption schedules would have to be identical. If

 they are not, then the additional conditions which force them to be identical are

 worth studying. [In this paper, we have restricted consumption schedules to be

 linear, but have not restricted them to be the same for all generations]. The

 conditions under which different consumption schedules are forced to be linear
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 also merit additional research.

 If the consumption schedule can be non-linear, then along a Nash equilibrium,

 the marginal rate of substitution between c, and Yti depends on the marginal
 propensity to consume c'(yt+ 1), rather than the average propensity, z, +. This
 is the essential difference implied by the solution concept of Kohlberg, and that
 used here. Consequently, the size of the strategy space matters, and the results

 are not quite comparable, unless the consumption schedule in Kohlberg's exercise

 turns out to be linear. Kohlberg provides some conditions under which the
 consumption schedule will be linear, and under these conditions, the results co-

 incide. Kohlberg does not examine whether his equilibrium consumption
 schedule generates programs which are Pareto-efficient. This also remains an

 interesting open question, the answer to which would further illuminate the
 relation between his concept of equilibrium and ours.

 7. PROOFS

 PROOF OF LEMMA I. Substitute ct+ = Ztf(xt), ct = ztyt and xt - (1 - Zt)Yt in
 (6). Write zt =g(z + , yt), and partially differentiate the equation with respect
 to Zt+ l and Yt The relations (8) and (9) are obtained by using (F) and (V).

 PROOF OF PROPOSITION 1. Suppose <z> and <K> belong to N, and z #2.
 Call the corresponding Nash equilibrium programs <x, y, c> and <x, y, c>
 respectively.

 Under condition (i) of the proposition, there exist unique numbers x, x, sat-
 isfying (1 -z)f(x)=x, and (1 -z)f(5-)=i. Clearly, xt-+x and X- +x, as t-+ oo.
 Hence, Ct-+zf(x)=c, and it--+f(5x)=c, as to-+wo. By continuity of v' and f',
 we have v'(c) = bv'(c)zf'(x) and v'(c) = bv'()2ff'(x). Hence zf'(x)=(l/b)=
 zf'(5). Without loss of generality, suppose z>z; then, since (I-z)[f(x)/x]=
 (1-f)[f(x)/x-], so x?x, and f'(x)?f'(Jx). Hence zf'(x)>2f'(x), which is a
 contradiction.

 Under condition (ii) of the proposition, (6) implies that z(t - z)'v'= l/[bd(lv+l)]

 =2(1_ -)w. Let h(k)=k(l -k)w. Then, h(k) is continuous on [0, 1), h(O)=0,
 h(k)-+oo, as k-+el, and h(k) is increasing. Hence, there is a unique solution, k,
 to the equation h(k)=I/[bd(w+1)], with O<k< 1. This contradiction estab-
 lishes the result.

 PROOF OF PROPOSITION 2. (Necessity) Suppose there exists an interior sta-

 tionary Nash equilibrium program; call it <x, y, c>. Let the stationary con-
 sumption-ratio associated with it be z. Then, by (6),

 (16) V'(zyt) = bv'(zyt+ 1)zf'(xt).

 Clearly, we must have either (a) w =-1, or (b) w -1. In case (b), (16) reduces
 to

 (17) yt = b yw+1z d a xa.
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 Using the facts that xt (I - Z)Yt, and yt+I =f(xt), in (17), we have

 (18) (1 - Z)w= abdl+wx l+w)(al )
 z

 The left-hand side depends only on z, and, hence, is a constant. Since w# -1,
 we must, therefore, have either (b')a = 1, or (b")a #1, and x, is a constant equal
 to xO = x. In case (b"), since c1 + x f(x) = dxa, we must have, upon simplification

 X-a
 (19) ( ) )= d_

 Combining (19) with (18), we have x-a=dab/(1 +fab).
 (Sufficiency) We note first that if an interior program satisfies (6) then, by

 concavity of f and v, it is a Nash equilibrium program. Thus, all we have to
 show is that under each of the three conditions of the proposition, there is a
 stationary interior program satisfying (6). We shall consider the three cases in
 turn.

 If case (i) holds, define a program Kx, y, c> in the following way: let xO x=
 yt+I=f(xt) for t?0; Xt=Y, -c, and Ct=ZYt where 21/(1+ab) for t?1.
 Then, clearly, <x, y, c> is feasible, interior, and stationary. To check that it
 is a Nash equilibrium program, note that [2/(1 - 2)] =1 lab, so by (F'),

 (20) b[xtf '(xt)f(xt)] [2/( -2) 1.

 Using the facts that (Ax) =yt+1, and yt= x/(l - 2), we have

 (21) bQ I)2f'(xt) x _2
 zytf1 J t t

 Since w= -1, this means that (6) is satisfied, as required.
 If case (ii) holds, define Kx, y, c> exactly as in case (i), except that we let 2 be

 the solution of

 (22) A(z) = z(l- zw) -

 Now h(z) is continuous on [0, 1), h(0)=0, h(z)-?oo, as z-*1, and h(z) is in-
 creasing. This implies that there is a unique solution, 2, to (22), such that 0<
 2<1. Hence Kx, y, c> is feasible, interior and stationary. To check that it is
 a Nash equilibrium program, observe that, by the definition of 2, we have

 (23) cg _ - bcg~12d
 dw(t12ygt t+1

 Using the fact that Yt+ 1= dx= d(I - 2)yt in (23), we obtain

 (24) cg = bcw+ 1d

 which implies that (6) holds, as required.
 If case (iii) holds, then define <x, y, c> as in case (i), except that we define

 2=1 -(xalad). By definition of x, we know that 0<2<1, so that <x, y, c>
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 is feasible, interior and stationary. To show that it is a Nash equilibrium program,
 note that the definition of ? implies that (18) is satisfied, and so (17) is satisfied.
 Hence, (6) is satisfied, as required.

 PROOF OF PROPOSITION 3. Choose 0, such that 0 0< < Z Define a program
 <x(0), y(O), c(0)> by x0 (0) =50=x; xx(0)=1+ O, and x,(0) = for t?2.
 Clearly, this is a feasible program for each 0. Now, observe that, u j(0) -I=
 v'(k1 ) (c1(0)-C I) + b v'(k2) (C2(0)-52), where (0)?! k1 5 1k, and e2 ? k2 ? C2(0).
 Hence, u 1(0)-1 - v'(k)(-0) + bv(k2) [f(g1 + 0) -f(9J)] = - v'(k)O + bv'(k2)
 f'(r1)0 where N ?r1 ?1+0. Hence, u(0)- -1 =[bv'(k2)f'(r1)(l - f2)10
 + [b22v(k2)f'(r1) - v'(k1)]0 = [e1(0) + e2(0)10, where e1(0) bv'(k2)f(r1)(1 -2)
 and e2(0) =[bv'(k2)f'(r)22 -_ (k )], Denote [bV'(e2)f (1)(I - 22)] by e.
 Then, as 0-*0, we have e2(0) --[b2v'(52)f'(9) - v'(e)] =0, since (,V, 5, e> is an
 interior Nash equilibrium program. Also, e1(0)-*e, as 0-+0. Hence, there is

 0* > 0, such that for 0?! 0*, [e2(0O)?!((l/4)e, and e1(0)? (l/2)e. So, u#1(04)-i1
 ?0*((1!2)e (1/4)e)? (114)eO*. So, for the feasible program Kx(0*), y(O*),
 C(?*)>, c1(0*)<Ki, ut(0*)>i4t for t= 1, 2; ut(0*)= t for t? 3, It is trivial, now,
 to construct a feasible program Kx, y, c> for which c <5e, and t> t for t? 1.

 PROO F PROPOSITION 4. (Necessity) To find a price sequence satisfying
 (10) and (I1), we will simply define <Q, p>, and check that. under the definition,
 conditions (10), (11) are indeed satisfied. Define

 (25) Po = Pt+ fPt f or t 0
 ft

 (26) q0. 1 ,t U c for t > l.

 Note, then, that 4 >0, and Pt >0, for t?0, since < 5, Z> is interior, and f,
 VI >0,

 To check that (l t) holds, use the concavity of f, and write, for any x ?0, f(x) -

 f(t)? f '(9t)(X-t). Multiply through by , 1+ , and use (25) to get P + I(f(x) -
 f(t))9 ?i(x - 5k). Then, (11) is obtained by transposition of the relevant terms.

 To check that (10) holds, use the concavity of v, and write, for any c, ci20,

 U3(c, c') U(, &+ 1)?'(5,)(c-q)?bv'(+ l)(c-+ G). Since <5, ,y, > is an
 interior Nash equilibrium program, so (6) holds, Multiply the previous in-

 equality by Z-t and use (6), (25) and (26) to obtain qt[U(c, c')- U(4, ,+ lb] ?
 Pt(C-)+(fi(P+ 1/2+1)(C'- t+,)4 Then, (10) is obtained by transposition of the
 relevant terms.

 (Sufficiency) Suppose that <9, y, e> is quasi-competitive, but not a Nash
 equilibrium program. Then there is some z(0? z ?1), and some time period (call

 it t), such that (5) is violated. Using (10), we have ptzYt + (Pt+ 1 l+ 4*
 F 1f((1 - z~y~)Y> J5~Jt~+ (i5A+ 1j2/+t+ 1? f((1 Let us denote (1- z)Y by
 x; then, zyt= -x, and substituting this into the previous inequality, we have
 P+ f(x)+ fi(jt-x)>Pt)> + + + fi Since c = - we have, by, trans-
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 position, f+ 1f(x)-Px>fih+jYt+ - txt, which violates (11), a contradiction.

 PROOF OF PROPOSITION 5. Suppose <x, y, c> is an interior Nash equilibrium
 program, which is Pareto-inefficient. Then there is a feasible program tx',
 y', c'>, such that cl =c, u,-ut for t> 1, and u;>u, for some t. Let X be the first
 period for which ul> ut. Then (x,, ct)=(x;, c') for 1?! t ! T, and x+l <xT+l,
 ca+t>ct+I. Let u'-ur=el. Now, note that for tl1, we have pt(c'-ct)+
 (Pt + -I?zD)(c?+1-ct+1) 0, so that it follows that

 (27) Pt[f(X,_1) -f(Xt.1) - (Xt - X)]

 + Zt+ lvf(xt) - fxt) - (Xt+I - xtr+o)] >0 .

 Using concavity off, and (25), and denoting pt(xt - x) by dA, we have (d, - dt )+
 (I/zt + 1)(dt+ I-dt) 0 ?, so that

 (28) dt+1 ? dt(l - zt+1) + dzt+1 for t 3 I.

 As we have noted earlier, dT=O, while d?+l>O. Using (28), we have d+2 2

 dt+ l(1- z?+ )=e2, say. Then, using (28) again, d,+3 ?e2(1-zr+3)+d?+1Zr.3?
 e2(1-z,+3)+e2zr+3=e2. Now, it is clear from (28) that for all tTr+3, we have
 dL?e2. Consequently, ptxt ? e2 for t ? r+3. This implies, since <x, y, c> is
 interior, that inf ptxt >0.

 t?O

 PROOF OF PROPOSITION 6. (Necessity) Suppose <x, y, c> is an interior stationary
 Nash equilibrium program, which is Pareto-inefficient. Then there is a feasible

 program <x', y', c'>, such that c' = ct. u,> u-t for t ? 1, and ut> ut for some t.
 Let the stationary consumption-ratio of <x, y, c> be z. Note, first, that a # 1.
 For if a=1, then x,+ =(l-z)dx,, and so pt, x+I=(I-z)ptxt, so that (12)
 holds, and <x, y, c> is Pateto-efficient by Proposition 5. Hence, a <1. Now,
 using the method and notation of the proof of Proposition 5, we have dt=
 p,(x-x')2 e2 >0, for ?rt T+ 3. Then, using Taylor's expansion up to the second-
 order, for f, in (27), we get fort 2 T+ 4, [(dt ?I4 l z) + d 2! [(dtlz) + dt - 1] + (1 l 2)pt
 [-f"(k..- 1)](xt - I1-x' )2 + (lI /2)p 1+ [-f "(kt)1 [(xt -x)2/z], where x,_ I kt,
 <xt_ l, and x <kt!?xt. It is easy to check that pt+ 1[-f"(k,)](x,-X')22(1 -a).
 (d?/pxt), and this yields the following inequality:

 [(dt+I/z) + dt] ? [(dtlz) + tit-i]

 + [(1/2)(l a)d2- _ pt_,xt_] + [(l/2)(l - a)d2/pxtz].
 Writing rt 1 =(dt + I/z) + d, and letting ni'=min (1, az/(l -z)),

 (29) rt+1 r, + 2 m(l-a)1[(d,z)+ dz

 Since for any two real numbers, A, B, we have (A2-+B2) 2 (1 /2)(A + B)2, so we
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 have r + 1 ? r ? r,[(I/4)nm'( I -a)/pxjr2. Letting in - mi (1, (1 /4)m'(1 - a)) and
 t, =nr,, we finally obtain

 (30) pt+ ? t(P +?Q-ke>.

 Now, following the proof of Theorem I in Mitra [1979], we obtain

 (31) l < 0x0
 :t ptxt+t

 Since P?sptx,(l1/z)+(1/(l -z))], so (31) implies (13).
 (Suciency) If (13) holds, then by Corollary 5 in Mitra [1979], <x, y, c>

 is inefficient, and hence Pareto-inefficient.

 PROOF OF COROLLARY 1. If the Nash equilibrium program <x, y, c> is Pareto-
 efficient, then clearly it is efficient. Conversely, if it is Pareto-inefficient, then by
 Proposition 6, condition (13) holds, and by Corollary 5 in Mitra, it is inefficient.

 PROOF OF PROPOSITION 7. (Sufficiency) This follows from Proposition 5.
 (Necessity) Suppose Kx, y, c> is an interior Nash equilibrium program which is
 Pareto-efficient. We separate two cases: (i) a = 1, (ii) a < 1. In case (i), we note
 that (x, y, c> is efficient, and so by Theorem 5 in Mitra [1979], (12) holds. In
 case (ii), the analysis is somewhat more complicated. We claim, first, that

 (32) f'(xt) ? I, implies that xt < Xt 1.

 Suppose, contrary to the claim, that f'(x)? 1, but x,? x1. Then by (6), v'(ct)<
 (ct + 1) so ct > ct+ that is fx- 1) x >f(xt)-Xt + so that using xt 1 xt, we
 have xt >mxt and f'(xt+ )?f'(xt4)? I. Thus the argument above can be re-
 peated for all succeeding periods to obtain xt monotonically increasing. Hence,
 there is e>0, such that x, k @+ e from a certain time onwards (where f'Qx) = I;
 i.e., g is the "golden-rule" input level). Hence <x, y, c> is inefficient, a con-
 tradiction. This establishes (32).

 Next, we claim that there is some t for which xi* If not, then xt?k for all
 t. So, f'(x,) ? I for all t, and by (32), xt <Xtt for all t. Hence xt converges to
 x~k. Clearly x>k is ruled out since this implies that <x, y, c> is inefficient.
 So x = , and so Ct converges to t=f(k) - .* and z1 converges to 2 1- (Z (i))-
 By continuity of u/ andf', and (6), we have 52=1. But b<1, and 0<2<1,
 so b2< 1, a contradiction, which establishes the claim.

 Let t1 be the first period for which xt<X. Then, clearly, x<, for t>t1, as
 well. If not, consider the first period, t2> t1 for which xt, ? * Then, xt -1 < ,
 and so by (32), f '(xt,) > 1, a contradiction. Hence xt <, for t >t t1. Hence, p,
 is decreasing for t>t1. We claim that pt converges to zero. If not, then Pt
 converges to some positive number. This implies that f'(xt) converges to 1,
 and xt converges to S. Then c, converges to t=J(XQ) -5, and z, converges to
 2=1 (SIf(S)). By continuity of Vt and f', and (6), we have bz = I. But, bs 1,
 and 0<2 1,so b0 < 1, a contradiction. Hence pt converges to zero. Since xt
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 is bounded above by S, from a certain time onwards, so (12) holds.
 (Sufficiency) This follows directly from Proposition 5.

 PROOF OF COROLLARY 2. (Necessity) If a Nash equilibrium program is
 Pareto-efficient, it is clearly efficient, since v is increasing.

 (Sufficiency) If an interior Nash equilibrium is efficient, then by the proof of
 Proposition 7 (which uses only (6) and efficiency of the program), we know that
 (12) is satisfied. Hence the program is Pareto-efficient, by Proposition 5.

 PROOF OF PROPOSITION 8. (Sufficiency) If (i) holds, then by Proposition 4,
 the program is a Nash equilibrium. If (ii) holds, then by Proposition 5, it is
 Pareto-efficient.

 (Necessity) If <x, y, c> is an interior Pareto-efficient Nash equilibrium pro-
 gram, then it satisfies (i) by Proposition 4, and it satisfies (ii) by Proposition 7.

 PROOF OF PROPOSITION 9. (Necessity) If the interior Nash equilibrium program
 <x, y, c> is Pareto-efficient, then it is efficient, and so, by Lemma 2 in Mitra
 [1979], (14) holds.

 (Sufficiency) If (14) holds, then we claim that (12) must hold. To see this,
 note that, since a= 1, the sequence <ptc> is summable. If (12) were violated,
 then inf py,>O. So, the sequence <Kz> is summable, violating (14). This

 t?I

 establishes the claim. Now, by Proposition 5, the Nash equilibrium is Pareto-
 efficient.

 PROOF OF PROPOSITION 10. (Necessity) If the interior Nash equilibrium

 <x, y, c> is Pareto-efficient, then by Proposition 7, (12) holds. Now, xtI =
 (1-zt +)f(xDt)=a'(l -z+ )f'(xt)x,, so we have Ptx+ 1x =(1 -z1+j)a 'x,.
 Suppose (15) is violated. Then, zt converges to zero, and so for t large,
 (1 - +1)aI> 1. This implies that pXt is increasing for t large, which violates
 (12). This contradiction establishes necessity.

 (Sufficiency) Suppose the interior Nash equilibrium program <x, y, c> is
 Pareto-inefficient, but (15) holds. We will show that this leads to a contradiction.

 We claim, first, that (32) holds. Otherwise, if for some z, f'(XT) < I t, and xT ? x7 J,
 then following the proof of Proposition 7, x, is monotonically increasing for t ? r.
 Since x, is bounded above by k=max (x, k), (wheref(k)= k, i.e., k is the maximum
 sustainable input level) so x converges to x> 2 e(where f'(g) I)* So, c converges
 to c =f(x) - x, and z; converges to z = 1- (x/f(x)). Clearly, x> k is ruled out,
 since this implies that c < 0. If x < k, then c > 0, so by continuity of a' and f i,
 and (6), we have bzf'(x) = 1 But b<I, 1 l < z < 1, and f '(x)?< 1, so bzf'(x) < l,
 a contradiction. If x=k, then c=0, and z=0, s0 z, converges to zero, a con-
 tradiction to (15). Thus the claim (32) is established.

 Next, we claim that there is some t for which x, < *. If not, then x, >.k and
 f'(x )? 1 for all t ; hence, by (32), x < xt for all t. Since x_>k, so xt converges
 to x ?2 *. Following exactly the argument in the previous paragraph, we then

 contradict (15). Thus, xt x<, for some t* Let the first period for which xt <
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 be called t1. Then, clearly, for t t , xt<k. Otherwise, there is some t>t1,
 for which x,? zt. Let the first period for which this happens be called t2. Then
 x,,2?t while xt2- I <k, so by (32), f'(xt2)> 1, which is a contradiction. Hence
 xt<1 for t t , and so Pt is decreasing for t>tt1 Consequently, Ptxm is bounded
 above. But since Kx, y, c> is Pareto-inefficient, so by Corollary 2, it is inefficient.

 Hence, by Theorem 4 in Mitra [19791, (l/ptxt) is summable, so ptxt, is unbounded
 above. This contradiction establishes sufficiency.

 PROOF OF THEOREM 1. (Necessity) If there exists an interior Nash equilibrium
 program, which is stationary, then by Proposition 2, we know that (i) or (ii) or
 (iii) must hold.

 (Sufficiency) Under (i) or (ii) or (iii), we know that there exist interior, sta-
 tionary Nash equilibrium programs, by Proposition 2. In fact we constructed
 such programs in the proof of Proposition 2. Hence, if we can check that those
 constructed programs are Pareto-efficient, then we will have established sufficiency.
 We consider the three cases in turn. If case (i) holds, then using (6), we have

 y+ =bzf'(xt)y1. Using the fact that x=(1 -zt)yt, we have xt+1=bzf'(xt)xt-
 Hence, Pt+ 1xt+ = bzptxt. In the constructed program of Proposition 2, z = I/
 (1+ab). Now, since b(1-a)?l, so bz=b/(l+ab)?l t. Hence, Ptxt is bounded
 above, and so by Proposition 6, it is Pareto efficient.

 If case (ii) holds, then y+ I=dxt, and xt+1=(l- z)yt1, so xt+I=(1-z)dx,.
 It follows that Pt+ xes 1 =S(I - z)ptx1, so ptxt converges to zero. By Proposition
 5, the program is Pareto-efficient.

 If case (iii) holds, and a s 1, then a< 1, and there is a "golden rule" input
 level, k=(ad)1/Qta). By definition o x we know that x?*. Hence, Pt is
 bounded above, and so pxt = p,,x is bounded, too. By Proposition 6, the program
 is Pareto-efficient.

 PROOF OF THEOREM 2. If cases (i) or (ii) or (iii) hold, then the result follows
 from Theorem 1. Thus, we are left with the case where w> 1, a<1, bh?. In
 this case, by Peleg and Yaari [1973, Theorem 7.1], there exists a Nash equili-
 brium program, Kx, y, c>. We will show that Kx, y, c> is Pareto-efficient. We
 claim first that

 (33) zA > 0 implies 0 < Zt < , for t < r.

 To verify this, note that since z > 0, so yr > 0, and xt > 0 for t < T. ThisL means
 that zt<I for t<T. So, we only have to check that z, >0 for tc<c. Suppose
 zt= 0 orsome t<. Let the last period for which this is true be called t1. Then
 z=- O, vand zt,+ >O Hence, c,-=0, and ct, l >0. But this would violate
 (5), since v'(0) = o. Thus, the claim (33) is established.

 Next, we distinguish between two cases; (I) ;= 1 for some ;t (2) zt < I, for all
 t. In-case (1), let t2 be the first period for which zt= I. Then, for t<t2, c < <I,
 by (33). Hence, the Nash equilibrium is interior for 0<t<t2. Then, we could
 define (q, ps), as in (25), (26), for 0?<t<2, and show that the Nash equilibrium
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 is quasi-competitive at these prices, for O<t<t2. We claim that the program
 <x, y, c> is Pareto-efficient. If not, then there is a program <x', y', c'> such that

 c =c1, u >uL for all t, and uLi>L for some t. Consider t3 to be the first period
 for which ULi> u. Clearly, t3 < t2 -1. Then, following the proof of Proposition
 5, but using strict concavity off, we obtain (28) with strict inequality for t3 < t < t2.
 This implies that x2 <xt2. But x2= 0 since z 2= 1, so x 2 <0, violating feasibility
 of <x', y', c'>. Hence, in case (1), there exists a Pareto-efficient Nash equilibrium.

 In case (2), we claim that 0< zt < I, for all t. If not, then let the first period
 for which zt=0, be called t4. Since x>0, so by (5), z1 >0; hence t4>1. Then,
 we have zt4-I>0, Zt4= O Since 0<zt<1, for t=t4-1, SO Yt4>0, and ct4=O.
 But this would violate (5), since v'(0)= oo. Hence, in case (2), 0<z,< 1, for
 all t; that is, <x, y, c> is an interior program. We claim that this program is
 Pareto-efficient. If not, then by Proposition 10, zt converges to zero. Note
 that by (6), we obtain

 (34) xt= abc-'vc(1+10

 Rearranging (34) yields the following equation:

 (35) XI-a = (ab)uI(l+'v)dzt+i[zt(l- zt)] .

 Since Z converges to zero, so xt converges to zero, by (35). Hence Pt converges
 to zero, and so does PtXt. Then, by Proposition 5, <x, y, c> is Pareto-efficient.
 This contradiction proves the claim that <x, y, c> is Pareto-efficient, and completes
 the proof in case (iv).

 London School of Economics, England
 S. U. N. Y, Stony Brook, U. S. A.
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